Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phenotypic plasticity is an important mechanism via which populations can respond to changing environmental conditions, but we know very little about how natural populations vary with respect to plasticity. Here we use random-regression animal models to understand the multivariate phenotypic and genetic patterns of plasticity variation in two key life-history traits, laying date and clutch size, using data from long-term studies of great tits in The Netherlands (Hoge Veluwe [HV]) and UK (Wytham Woods [WW]). We show that, while population-level responses of laying date and clutch size to temperature were similar in the two populations, between-individual variation in plasticity differed markedly. Both populations showed significant variation in phenotypic plasticity (IxE) for laying date, but IxE was significantly higher in HV than in WW. There were no significant genotype-by-environment interactions (GxE) for laying date, yet differences in GxE were marginally nonsignificant between HV and WW. For clutch size, we only found significant IxE and GxE in WW but no significant difference between populations. From a multivariate perspective, plasticity in laying date was not correlated with plasticity in clutch size in either population. Our results suggest that generalizations about the form and cause of any response to changing environmental conditions across populations may be difficult.

Original publication

DOI

10.1111/j.1558-5646.2010.00991.x

Type

Journal article

Journal

Evolution

Publication Date

08/2010

Volume

64

Pages

2221 - 2237

Keywords

Animals, Clutch Size, Environment, Female, Male, Models, Biological, Passeriformes, Phenotype, Regression Analysis, Reproduction, Sexual Behavior, Animal