Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The gut sets the immune and metabolic parameters for the survival of commensal bacteria. We report that in Drosophila, deficiency in bacterial recognition upstream of Toll/NF-κB signalling resulted in reduced density and diversity of gut bacteria. Translational regulation factor 4E-BP, a transcriptional target of Toll/NF-κB, mediated this host-bacteriome interaction. In healthy flies, Toll activated 4E-BP, which enabled fat catabolism, which resulted in sustaining of the bacteriome. The presence of gut bacteria kept Toll signalling activity thus ensuring the feedback loop of their own preservation. When Toll activity was absent, TOR-mediated suppression of 4E-BP made fat resources inaccessible and this correlated with loss of intestinal bacterial density. This could be overcome by genetic or pharmacological inhibition of TOR, which restored bacterial density. Our results give insights into how an animal integrates immune sensing and metabolism to maintain indigenous bacteria in a healthy gut.

Original publication

DOI

10.1371/journal.pgen.1009992

Type

Journal article

Journal

PLoS Genet

Publication Date

10/01/2022

Volume

18