Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homologous recombination is an important mechanism for the repair of double-strand breaks in DNA. One possible outcome of such repair is the reciprocal exchange or crossing over of DNA between chromosomes. Crossovers are beneficial during meiosis because, as well as generating genetic diversity, they promote proper chromosome segregation through the establishment of chiasmata. However, crossing over in vegetative cells can potentially result in loss of heterozygosity and chromosome rearrangements, which can be deleterious. Consequently, cells have evolved mechanisms to limit crossing over during vegetative growth while promoting it during meiosis. Here, we provide a brief review of how some of these mechanisms are thought to work.

Original publication

DOI

10.1042/BST0340537

Type

Journal article

Journal

Biochem Soc Trans

Publication Date

08/2006

Volume

34

Pages

537 - 541

Keywords

Animals, Crossing Over, Genetic, DNA Helicases, DNA-Binding Proteins, Humans, Meiosis, Vegetables