Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dynamic and structural information has been obtained for an analogue of acetylcholine while bound to the agonist binding site on the nicotinic acetylcholine receptor (nAcChoR), using wide-line deuterium solid-state NMR. Analysis of the deuterium lineshape obtained at various temperatures from unoriented nAcChoR membranes labeled with deuterated bromoacetylcholine (BAC) showed that the quaternary ammonium group of the ligand is well constrained within the agonist binding site when compared with the dynamics observed in the crystalline solids. This motional restriction would suggest that a high degree of complementarity exists between the quaternary ammonium group of the ligand and the protein within the agonist binding site. nAcChoR membranes were uniaxially oriented by isopotential centrifugation as determined by phosphorous NMR of the membrane phospholipids. Analysis of the deuterium NMR lineshape of these oriented membranes enriched with the nAcChoR labeled with N(+)(CD(3))(3)-BAC has enabled us to determine that the angle formed between the quaternary ammonium group of the BAC and the membrane normal is 42 degrees in the desensitized form of the receptor. This measurement allows us to orient in part the bound ligand within the proposed receptor binding site.

Original publication

DOI

10.1073/pnas.031361698

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

27/02/2001

Volume

98

Pages

2346 - 2351

Keywords

Acetylcholine, Animals, Binding Sites, Models, Molecular, Molecular Conformation, Nuclear Magnetic Resonance, Biomolecular, Receptors, Nicotinic, Torpedo