Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Introducing synthetic constructs into bacteria often carries a burden that leads to reduced fitness and selective pressure for organisms to mutate their constructs and hence to a reduced functional lifetime. Understanding burden requires suitable methods for accurate measurement and quantification. We develop a dynamic growth model from physiologically relevant first-principles that allows parameters relevant to burden to be extracted from standard growth curves. We test several possibilities for the response of a bacterium to a new environment in terms of resource allocation. We find that burden manifests in the time taken to respond to new conditions as well as the rate of growth in exponential phase. Furthermore, we see that the presence of a synthetic construct hastens the reduction of ribosomes when approaching stationary phase, altering memory effects from previous periods of growth.

Original publication

DOI

10.1021/acssynbio.8b00015

Type

Journal article

Journal

ACS Synth Biol

Publication Date

18/05/2018

Volume

7

Pages

1201 - 1210

Keywords

burden, growth, mathematical model, synthetic biology