Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Viruses from the Coronaviridae, Togaviridae, and Hepeviridae families ​all contain genes that encode a conserved protein domain, called a macrodomain; however, the role of this domain during infection has remained enigmatic. The recent discovery that mammalian macrodomain proteins enzymatically remove ADP-ribose, a common post-translation modification, from proteins has led to an outburst of studies describing both the enzymatic activity and function of viral macrodomains. These new studies have defined these domains as de-ADP-ribosylating enzymes, which indicates that these viruses have evolved to counteract antiviral ADP-ribosylation, likely mediated by poly-ADP-ribose polymerases (PARPs). Here, we comprehensively review this rapidly expanding field, describing the structures and enzymatic activities of viral macrodomains, and discussing their roles in viral replication and pathogenesis.

Original publication

DOI

10.1016/j.tim.2017.11.011

Type

Journal article

Journal

Trends Microbiol

Publication Date

07/2018

Volume

26

Pages

598 - 610

Keywords

ADP-ribosylation, Coronaviridae, Hepeviridae, Togaviridae, interferon (IFN), macrodomain, pathogenesis, poly-ADP-ribose polymerase (PARP), replication