Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chemotaxis towards carbohydrates is mediated, in enteric bacteria, either by the transport-independent, methylation-dependent chemotaxis pathway or by transport and phosphorylation via the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). This study shows that Rhodobacter sphaeroides is chemotactic to a range of carbohydrates but the response involves neither the classical methyl-accepting chemotaxis protein (MCP) pathway nor the PTS transport pathway. The chemoattractant fructose was transported by a fructose-specific PTS system, but transport through this system did not appear to cause a chemotactic signal. Chemotaxis to sugars was inducible and occurred with the induction of carbohydrate transport systems and with substrate incorporation. A mutation of the glucose-6-phosphate dehydrogenase gene (zwf) inhibited chemotaxis towards substrates metabolized by this pathway although transport was unaffected. Chemotaxis to other, unrelated, chemoattractants (e.g. succinate) was unaffected. These data, in conjunction with the fact that mannitol and fructose (which utilize different transport pathways) compete in chemotaxis assays, suggest that in R. sphaeroides the chemotactic signal is likely to be generated by metabolic intermediates or the activities of the electron-transport chain and not by a cell-surface receptor or the rate or mode of substrate transport.

Original publication

DOI

10.1099/00221287-144-1-229

Type

Journal article

Journal

Microbiology

Publication Date

01/1998

Volume

144 ( Pt 1)

Pages

229 - 239

Keywords

Biological Transport, Cell Movement, Chemotaxis, Fructokinases, Glucosephosphate Dehydrogenase, Mannitol Dehydrogenases, Methylation, Monosaccharides, Phosphoenolpyruvate Sugar Phosphotransferase System, Phosphofructokinase-1, Rhodobacter sphaeroides, Signal Transduction