Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UNLABELLED: One lineage of human endogenous retroviruses (HERVs), HERV-K(HML2), is upregulated in many cancers, some autoimmune/inflammatory diseases, and HIV-infected cells. Despite 3 decades of research, it is not known if these viruses play a causal role in disease, and there has been recent interest in whether they can be used as immunotherapy targets. Resolution of both these questions will be helped by an ability to distinguish between the effects of different integrated copies of the virus (loci). Research so far has concentrated on the 20 or so recently integrated loci that, with one exception, are in the human reference genome sequence. However, this viral lineage has been copying in the human population within the last million years, so some loci will inevitably be present in the human population but absent from the reference sequence. We therefore performed the first detailed search for such loci by mining whole-genome sequences generated by next-generation sequencing. We found a total of 17 loci, and the frequency of their presence ranged from only 2 of the 358 individuals examined to over 95% of them. On average, each individual had six loci that are not in the human reference genome sequence. Comparing the number of loci that we found to an expectation derived from a neutral population genetic model suggests that the lineage was copying until at least ∼250,000 years ago. IMPORTANCE: About 5% of the human genome sequence is composed of the remains of retroviruses that over millions of years have integrated into the chromosomes of egg and/or sperm precursor cells. There are indications that protein expression of these viruses is higher in some diseases, and we need to know (i) whether these viruses have a role in causing disease and (ii) whether they can be used as immunotherapy targets in some of them. Answering both questions requires a better understanding of how individuals differ in the viruses that they carry. We carried out the first careful search for new viruses in some of the many human genome sequences that are now available thanks to advances in sequencing technology. We also compared the number that we found to a theoretical expectation to see if it is likely that these viruses are still replicating in the human population today.

Original publication

DOI

10.1128/JVI.00919-14

Type

Journal article

Journal

J Virol

Publication Date

01/09/2014

Volume

88

Pages

9529 - 9537

Keywords

Computational Biology, DNA, Endogenous Retroviruses, Genetic Loci, Genetic Variation, Genome, Human, High-Throughput Nucleotide Sequencing, Humans