Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present new measures of the causal direction, or direction of effect, between two non-Gaussian random variables. They are based on the likelihood ratio under the linear non-Gaussian acyclic model (LiNGAM). We also develop simple first-order approximations of the likelihood ratio and analyze them based on related cumulant-based measures, which can be shown to find the correct causal directions. We show how to apply these measures to estimate LiNGAM for more than two variables, and even in the case of more variables than observations. We further extend the method to cyclic and nonlinear models. The proposed framework is statistically at least as good as existing ones in the cases of few data points or noisy data, and it is computationally and conceptually very simple. Results on simulated fMRI data indicate that the method may be useful in neuroimaging where the number of time points is typically quite small.

Type

Journal article

Journal

J Mach Learn Res

Publication Date

01/2013

Volume

14

Pages

111 - 152

Keywords

Bayesian network, causality, independent component analysis, non-Gaussianity, structural equation model