Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plant growth is adaptively modulated in response to environmental change. The phytohormone gibberellin (GA) promotes growth by stimulating destruction of the nuclear growth-repressing DELLA proteins [1-7], thus providing a mechanism for environmentally responsive growth regulation [8, 9]. Furthermore, DELLAs promote survival of adverse environments [8]. However, the relationship between these survival and growth-regulatory mechanisms was previously unknown. Here, we show that both mechanisms are dependent upon control of the accumulation of reactive oxygen species (ROS). ROS are small molecules generated during development and in response to stress that play diverse roles as eukaryotic intracellular second messengers [10]. We show that Arabidopsis DELLAs cause ROS levels to remain low after either biotic or abiotic stress, thus delaying cell death and promoting tolerance. In essence, stress-induced DELLA accumulation elevates the expression of genes encoding ROS-detoxification enzymes, thus reducing ROS levels. In accord with recent demonstrations that ROS control root cell expansion [11, 12], we also show that DELLAs regulate root-hair growth via a ROS-dependent mechanism. We therefore propose that environmental variability regulates DELLA activity [8] and that DELLAs in turn couple the downstream regulation of plant growth and stress tolerance through modulation of ROS levels.

Original publication

DOI

10.1016/j.cub.2008.04.034

Type

Journal article

Journal

Curr Biol

Publication Date

06/05/2008

Volume

18

Pages

656 - 660

Keywords

Arabidopsis, Plant Growth Regulators, Reactive Oxygen Species, Salinity