Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DESIGN: We sought to investigate the evolutionary and historical reasons for the different epidemiological patterns of HIV-1 in the early epidemic. In order to characterize the demographic history of HIV-1 subtypes A and D in east Africa, we examined molecular epidemiology, geographical and historical data. METHODOLOGY: We employed high-resolution phylodynamics to investigate the introduction of HIV-1A and D into east Africa, the geographic trends of viral spread, and the demographic growth of each subtype. We also used geographic information system data to investigate human migration trends, population growth, and human mobility. RESULTS: HIV-1A and D were introduced into east Africa after 1950 and spread exponentially during the 1970s, concurrent with eastward expansion. Spatiotemporal data failed to explain the establishment and spread of HIV based on urban population growth and migration. The low prevalence of the virus in the Democratic Republic of Congo before and after the emergence of the pandemic was, however, consistent with regional accessibility data, highlighting the difficulty in travel between major population centers in central Africa. In contrast, the strong interconnectivity between population centers across the east African region since colonial times has likely fostered the rapid growth of the epidemic in this locale. CONCLUSION: This study illustrates how phylodynamic analysis of pathogens informed by geospatial data can provide a more holistic and evidence-based interpretation of past epidemics. We advocate that this 'landscape phylodynamics' approach has the potential to provide a framework both to understand epidemics' spread and to design optimal intervention strategies.

Original publication

DOI

10.1097/QAD.0b013e32832faf61

Type

Journal article

Journal

AIDS

Publication Date

10/09/2009

Volume

23

Pages

F9 - F17

Keywords

Africa, Eastern, Bayes Theorem, Disease Outbreaks, Emigration and Immigration, Evolution, Molecular, Geographic Information Systems, HIV Infections, HIV-1, Humans, Phylogeny, Population Growth