Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A 14-residue fragment of the C-terminal oligomerization domain, or T-peptide, of human acetylcholinesterase (AChE) shares sequence homology with the amyloid-beta peptide implicated in Alzheimer's disease and can spontaneously self-assemble into classical amyloid fibrils under physiological conditions [Greenfield, S. A., and Vaux, D. J. (2002) Neuroscience 113, 485-492; Cottingham, M. G., Hollinshead, M. S., and Vaux, D. J. (2002) Biochemistry 41, 13539-13547]. Here we demonstrate that the conformation of this AChE(586-599) peptide, both before and after fibril formation, is different from that of a longer peptide, T(40), corresponding to the entire 40-amino acid T-peptide (residues 575-614 of AChE). This peptide is prone to homomeric hydrophobic interactions, consistent with its role in AChE subunit assembly, and possesses an alpha-helical structure which protects against the development of the beta-sheet-rich amyloidogenic conformation favored by the shorter constituent AChE(586-599) fragment. Using a conformation-sensitive monoclonal antibody raised against the alpha-helical T(40) peptide, we demonstrate that the conformation of the T-peptide domain within intact AChE is antigenically indistinguishable from that of the synthetic T(40) peptide. A second monoclonal antibody raised against the fibrillogenic AChE(586-599) fragment recognizes not only beta-sheet amyloid aggregates but also SDS-resistant protofibrillar oligomers. A single-antibody sandwich ELISA confirms that such oligomers exist at micromolar peptide concentrations, well below that required for formation of classical amyloid fibrils. Epitope mapping with this monoclonal antibody identifies a region near the N-terminus of the peptide that remains accessible in oligomer and fibril alike, suggesting a model for the arrangement of subunits within AChE(586-599) protofibrils and fibrils.

Original publication

DOI

10.1021/bi034768i

Type

Journal article

Journal

Biochemistry

Publication Date

16/09/2003

Volume

42

Pages

10863 - 10873

Keywords

Acetylcholinesterase, Amino Acid Sequence, Amyloid, Antibodies, Monoclonal, Cells, Cultured, Circular Dichroism, Epitope Mapping, Humans, Models, Molecular, Molecular Sequence Data, Molecular Weight, Peptide Fragments, Protein Structure, Secondary, Protein Structure, Tertiary, Recombinant Proteins, Sequence Alignment, Sequence Homology, Amino Acid, Surface Plasmon Resonance, Transfection