Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study measured transit time (TT) and attenuation of sound transmitted through six pairs of excised pig lungs. Single-frequency sounds (50-600 Hz) were applied to the tracheal lumen, and the transmitted signals were monitored on the tracheal and lung surface using microphones. The effect of varying intrapulmonary pressure (Pip) between 5 and 25 cmH(2)O on TT and sound attenuation was studied using both air and helium (He) to inflate the lungs. From 50 to approximately 200 Hz, TT decreased from 4.5 ms at 50 Hz to 1 ms at 200 Hz (at 25 cmH(2)O). Between approximately 200 and 600 Hz, TT was relatively constant (1.1 ms at upper and 1.5 ms at lower sites). Gas density had very little effect on TT (air-to-He ratio of approximately 1.2 at upper sites and approximately 1 at lower sites at 25 cmH(2)O). Pip had marked effects (depending on gas and site) on TT between 50 and 200 Hz but no effect at higher frequencies. Attenuation was frequency dependent between 50 and 600 Hz, varying between -10 and -35 dB with air and -2 and -28 dB with He. Pip also had strong influence on attenuation, with a maximum sensitivity of 1.14 (air) and 0.64 dB/cmH(2)O (He) at 200 Hz. At 25 cmH(2)O and 200 Hz, attenuation with air was about three times higher than with He. This suggests that sound transmission through lungs may not be dominated by parenchyma but by the airways. The linear relationship between increasing Pip and increasing attenuation, which was found to be between 50 and approximately 100 Hz, was inverted above approximately 100 Hz. We suggest that this change is due to the transition of the parenchymal model from open to closed cell. These results indicate that acoustic propagation characteristics are a function of the density of the transmission media and, hence, may be used to locate collapsed lung tissue noninvasively.

Original publication

DOI

10.1152/jappl.2000.89.6.2472

Type

Journal article

Journal

J Appl Physiol (1985)

Publication Date

12/2000

Volume

89

Pages

2472 - 2482

Keywords

Acoustics, Air, Animals, Helium, In Vitro Techniques, Lung, Models, Biological, Sound, Swine, Time Factors