Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of beta-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase epsilon, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase alpha is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase epsilon chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase alpha.

Original publication

DOI

10.1091/mbc.e08-04-0429

Type

Journal article

Journal

Mol Biol Cell

Publication Date

02/2009

Volume

20

Pages

1213 - 1222

Keywords

Catalytic Domain, Chromatin, DNA Polymerase I, DNA Polymerase II, DNA Replication, DNA-Binding Proteins, Estradiol, Nuclear Proteins, Phenotype, Protein Binding, Protein Structure, Tertiary, Recombinant Fusion Proteins, Replication Origin, S Phase, Schizosaccharomyces, Schizosaccharomyces pombe Proteins