Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The homeobox gene superfamily includes many genes implicated in brain development in vertebrates; for example, the Otx, Emx, Dmbx, Gbx, En and Hox gene families. We describe the evolutionary history of the homeobox gene superfamily, as inferred from molecular phylogenetics and chromosomal mapping. Studies of amphioxus, a close relative of vertebrates, have proven particularly informative because it has a genome uncomplicated by recent lineage-specific gene duplications and because in situ hybridisation techniques exist for mapping gene positions and gene expression patterns. We describe an ancient subdivision into gene classes (ANTP, PRD, LIM, POU, SIN, TALE), each containing multiple gene families. The original ANTP class gene duplicated to give distinct NK-like and Hox/ParaHox-related genes, both of which underwent tandem duplication, before the expanding Hox gene cluster duplicated to give Hox and ParaHox clusters. A chromosomal breakage event probably occurred to separate the NK-like and extended Hox genes. Finally, there was additional and extensive gene duplication and gene loss in the vertebrate lineage. We argue that understanding evolutionary history is important for establishing consistent gene nomenclature, and for comparing gene expression patterns and gene functions between species and between gene families.

Original publication

DOI

10.1016/j.brainresbull.2005.06.003

Type

Conference paper

Publication Date

15/09/2005

Volume

66

Pages

484 - 490

Keywords

Animals, Biological Evolution, Brain, Genes, Homeobox