Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system.

Original publication

DOI

10.1042/BJ20101920

Type

Journal article

Journal

Biochem J

Publication Date

01/05/2011

Volume

435

Pages

743 - 753

Keywords

Bacterial Proteins, Cytoplasm, Gene Expression Regulation, Bacterial, Multigene Family, NAD, Nitrate Reductase, Nitrates, Nitrite Reductases, Nitrites, Oxidation-Reduction, Paracoccus denitrificans, Plasmids