Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the face of a growing human footprint, understanding interactions among threatened large carnivores is fundamental to effectively mitigating anthropogenic threats and managing species. Using data from a large-scale camera trap survey, we investigated the effects of environmental and anthropogenic variables on the interspecific interaction of a carnivore guild comprising of tiger, leopard and dhole in Bhutan. We demonstrate the complex effects of human settlement density on large carnivore interactions. Specifically, we demonstrate that leopard-dhole co-occupancy probability was higher in areas with higher human settlement density. The opposite was true for tiger-leopard co-occupancy probability, but it was positively affected by large prey (gaur) abundance. These findings suggest that multi-carnivore communities across land-use gradients are spatially structured and mediated also by human presence and/or the availability of natural prey. Our findings show that space-use patterns are driven by a combination of the behavioural mechanism of each species and its interactions with competing species. The duality of the effect of settlement density on species interactions suggests that the benefits of exploiting anthropogenic environments are a trade-off between ecological opportunity (food subsidies or easy prey) and the risk of escalating conflict with humans.

Original publication

DOI

10.1098/rspb.2021.2681

Type

Journal article

Journal

Proc Biol Sci

Publication Date

27/04/2022

Volume

289

Keywords

eastern Himalaya, human settlement, interspecific interaction, large carnivores, multi-species occupancy model, Animals, Canidae, Carnivora, Cattle, Ecosystem, Humans, Panthera, Sympatry