Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore-space, and models of AMF-enhanced P-uptake are poorly validated. We used synchrotron X-ray computed tomography (SXRCT) to visualize mycorrhizas in soil, and synchrotron X-ray fluorescence (XRF/XANES) elemental mapping for phosphorus (P), sulphur (S) and aluminium (Al), in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Results showed that AMF co-locate with areas of high P and low Al, andpreferentially associate with organic-type P species in preference to Al-rich inorganic P. We discovered that AMF avoid Al-rich areas as a source of P. S-rich regions correlated with higher hyphal density and an increased organic-associated P-pool, whilst oxidized S-species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome-related. Our experimentally-validated model led to an estimate of P-uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated; a result with significant implications for modelling of plant-soil-AMF interactions.

Original publication

DOI

10.1111/nph.17980

Type

Journal article

Journal

New Phytol

Publication Date

19/01/2022

Keywords

Mycorrhizas, X-ray Computed Tomography, X-ray fluorescence, plant phosphorus uptake, rhizosphere modelling, synchrotron