Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tonoplast vesicles were prepared from leaf mesophyll homogenates of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie to study the effects of anions on ATP- and inorganic-pyrophosphate (PPi)-dependent H+ transport. In the presence of gramicidin, substrate hydrolysis by the tonoplast ATPase was characteristically stimulated by chloride and inhibited by nitrate, but was unaffected by malate and a wide range of other organic-acid anions; the PPiase was anion-insensitive. Malate was more effective than chloride both in stimulating ATP- and PPi-dependent vesicle acidification (measured as quinacrine-fluorescence quenching) and in dissipating a pre-existing inside-positive membrane potential (measured as oxonol-V-fluorescence quenching), indicating that malate was more readily transported across the tonoplast. Certain other four-carbon dicarboxylates also supported high rates of vesicle acidification, their order of effectiveness being fumarate ≫ malate ∼-succinate > oxalacetate ∼- tartrate; the five-carbon dicarboxylates 2-oxoglutarate and glutarate were also transported, although at lower rates. Experiments with non-naturally occurring anions indicated that the malate transporter was not stereospecific, but that it required the trans-carboxyl configuration for transport. Shorter-chain or longer-chain dicarboxylates were not transported, and neither were monocarboxylates, the amino-acid anions aspartate and glutamate, nor the tricarboxylate isocitrate. The non-permeant anions maleate and tartronate appeared to be competitive inhibitors of malate transport but did not affect chloride transport, indicating that malate and chloride influx at the tonoplast might be mediated by separate transporters. © 1989 Springer-Verlag.

Original publication

DOI

10.1007/BF00393698

Type

Journal article

Journal

Planta

Publication Date

01/09/1989

Volume

179

Pages

265 - 274