Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. We have studied the effects of intravenous infusions of 0.1 mmol/min KCl (raising arterial potassium from ca. 3.2 to 6.0 mM) on the steady-state responses of carotid body chemoreceptors to end-tidal PCO2 and PO2 in the pentobarbitone-anaesthetized cat. 2. The excitatory effect of these KCl infusions was enhanced by hypoxia and reduced or abolished by hyperoxia. 3. Hypercapnia did not enhance, and usually reduced, excitation by KCl. 4. When similar control discharge frequencies were established by hypoxia or by hypercapnia, a KCl infusion excited the hypoxic discharge by about twice as much as it did the hypercapnic discharge. 5. These observations are not inconsistent with the idea that the mechanism underlying hypoxic excitation of arterial chemoreceptors is one that controls extracellular potassium concentration near the afferent nerve ending. 6. Insofar as potassium-induced excitation of chemoreceptor discharge is abruptly reduced by hyperoxia it behaves like Asmussen and Nielsen's postulated 'anaerobic work substance' and it may therefore contribute to the increased importance of the arterial chemoreflex reported in exercise.

Original publication

DOI

10.1113/jphysiol.1988.sp017176

Type

Journal article

Journal

J Physiol

Publication Date

07/1988

Volume

401

Pages

519 - 531

Keywords

Action Potentials, Animals, Carbon Dioxide, Carotid Body, Cats, Chemoreceptor Cells, Oxygen, Potassium, Time Factors