Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia.

Original publication

DOI

10.1093/molbev/msv004

Type

Journal article

Journal

Mol Biol Evol

Publication Date

05/2015

Volume

32

Pages

1161 - 1174

Keywords

Gli, Lepidoptera, homeobox, microRNA, segmentation, wing patterning, Animals, Butterflies, Evolution, Molecular, Gene Expression Regulation, Developmental, Genome, MicroRNAs, Moths, Phylogeny, Wings, Animal