Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cell wall is an important determinant of plant cell form. Here we define a class of Arabidopsis root hair mutants with defective cell walls. Plants homozygous for kojak (kjk) mutations initiate root hairs that rupture at their tip soon after initiation. The KJK gene was isolated by positional cloning, and its identity was confirmed by the molecular complementation of the Kjk(-) phenotype and the sequence of three kjk mutant alleles. KOJAK encodes a cellulose synthase-like protein, AtCSLD3. KOJAK/AtCSLD3 is the first member of this subfamily of proteins to be shown to have a function in cell growth. Subcellular localization of the KOJAK/AtCSLD3 protein using a GFP fusion shows that KOJAK/AtCSLD3 is located on the endoplasmic reticulum, indicating that KOJAK/AtCSLD3 is required for the synthesis of a noncellulosic wall polysaccharide. Consistent with the cell specific defect in the roots of kjk mutants, KOJAK/AtCSDL3 is preferentially expressed in hair cells of the epidermis. The Kjk(-) phenotype and the pattern of KOJAK/AtCSLD3 expression suggest that this gene acts early in the process of root hair outgrowth. These results suggest that KOJAK/AtCSLD3 is involved in the biosynthesis of beta-glucan-containing polysaccharides that are required during root hair elongation.

Type

Journal article

Journal

Genes Dev

Publication Date

01/01/2001

Volume

15

Pages

79 - 89

Keywords

Amino Acid Sequence, Arabidopsis, Arabidopsis Proteins, Cell Division, Cloning, Molecular, Conserved Sequence, Genes, Reporter, Genetic Complementation Test, Homozygote, Molecular Sequence Data, Morphogenesis, Mutation, Plant Proteins, Plant Roots, Plants, Genetically Modified