Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phenytoin and carbamazepine are effective and inexpensive anti-epileptic drugs (AEDs). As with many AEDs, a broad range of doses is used, with the final "maintenance" dose normally determined by trial and error. Although many genes could influence response to these medicines, there are obvious candidates. Both drugs target the alpha-subunit of the sodium channel, encoded by the SCN family of genes. Phenytoin is principally metabolized by CYP2C9, and both are probable substrates of the drug transporter P-glycoprotein. We therefore assessed whether variation in these genes associates with the clinical use of carbamazepine and phenytoin in cohorts of 425 and 281 patients, respectively. We report that a known functional polymorphism in CYP2C9 is highly associated with the maximum dose of phenytoin (P = 0.0066). We also show that an intronic polymorphism in the SCN1A gene shows significant association with maximum doses in regular usage of both carbamazepine and phenytoin (P = 0.0051 and P = 0.014, respectively). This polymorphism disrupts the consensus sequence of the 5' splice donor site of a highly conserved alternative exon (5N), and it significantly affects the proportions of the alternative transcripts in individuals with a history of epilepsy. These results provide evidence of a drug target polymorphism associated with the clinical use of AEDs and set the stage for a prospective evaluation of how pharmacogenetic diagnostics can be used to improve dosing decisions in the use of phenytoin and carbamazepine. Although the case made here is compelling, our results cannot be considered definitive or ready for clinical application until they are confirmed by independent replication.

Original publication

DOI

10.1073/pnas.0407346102

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

12/04/2005

Volume

102

Pages

5507 - 5512

Keywords

Adolescent, Adult, Aged, Alleles, Amino Acid Sequence, Anticonvulsants, Aryl Hydrocarbon Hydroxylases, Base Sequence, Brain, Carbamazepine, Child, Child, Preschool, Cohort Studies, Cytochrome P-450 CYP2C9, Epilepsy, Exons, Female, Genetic Markers, Genotype, Humans, Infant, Introns, Male, Middle Aged, Molecular Sequence Data, NAV1.1 Voltage-Gated Sodium Channel, Nerve Tissue Proteins, Phenytoin, Polymorphism, Genetic, Sodium Channels