Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Humans can resist temptations by exerting willpower, the effortful inhibition of impulses. But willpower can be disrupted by emotions and depleted over time. Luckily, humans can deploy alternative self-control strategies like precommitment, the voluntary restriction of access to temptations. Here, we examined the neural mechanisms of willpower and precommitment using fMRI. Behaviorally, precommitment facilitated choices for large delayed rewards, relative to willpower, especially in more impulsive individuals. While willpower was associated with activation in dorsolateral prefrontal cortex (DLPFC), posterior parietal cortex (PPC), and inferior frontal gyrus, precommitment engaged lateral frontopolar cortex (LFPC). During precommitment, LFPC showed increased functional connectivity with DLPFC and PPC, especially in more impulsive individuals, and the relationship between impulsivity and LFPC connectivity was mediated by value-related activation in ventromedial PFC. Our findings support a hierarchical model of self-control in which LFPC orchestrates precommitment by controlling action plans in more caudal prefrontal regions as a function of expected value.

Original publication

DOI

10.1016/j.neuron.2013.05.028

Type

Journal article

Journal

Neuron

Publication Date

24/07/2013

Volume

79

Pages

391 - 401

Keywords

Adolescent, Adult, Brain Mapping, Cerebral Cortex, Choice Behavior, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Parietal Lobe, Photic Stimulation, Prefrontal Cortex, Psychomotor Performance, Reward, Young Adult