Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Various mechanisms are used by single-stranded RNA viruses to initiate and control their replication via the synthesis of replicative intermediates. In general, the same virus-encoded polymerase is responsible for both genome and antigenome strand synthesis from two different, although related promoters. Here we aimed to elucidate the mechanism of initiation of replication by influenza virus RNA polymerase and establish whether initiation of cRNA and viral RNA (vRNA) differed. To do this, two in vitro replication assays, which generated transcripts that had 5' triphosphate end groups characteristic of authentic replication products, were developed. Surprisingly, mutagenesis screening suggested that the polymerase initiated pppApG synthesis internally on the model cRNA promoter, whereas it initiated pppApG synthesis terminally on the model vRNA promoter. The internally synthesized pppApG could subsequently be used as a primer to realign, by base pairing, to the terminal residues of both the model cRNA and vRNA promoters. In vivo evidence, based on the correction of a mutated or deleted residue 1 of a cRNA chloramphenicol acetyltransferase reporter construct, supported this internal initiation and realignment model. Thus, influenza virus RNA polymerase uses different initiation strategies on its cRNA and vRNA promoters. To our knowledge, this is novel and has not previously been described for any viral RNA-dependent RNA polymerase. Such a mechanism may have evolved to maintain genome integrity and to control the level of replicative intermediates in infected cells.

Original publication

DOI

10.1128/JVI.80.5.2337-2348.2006

Type

Journal article

Journal

J Virol

Publication Date

03/2006

Volume

80

Pages

2337 - 2348

Keywords

Base Pairing, Chloramphenicol O-Acetyltransferase, DNA-Directed RNA Polymerases, Influenza A virus, Promoter Regions, Genetic, RNA, Complementary, RNA, Viral, Templates, Genetic, Transcription, Genetic, Virus Replication