Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8 thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster dephosphorylation of linker for activation of T cells and ERK upon activation. Normal TCR levels and cytokine production were restored by culturing cells in the absence of TCR/spMHC interaction, demonstrating dynamic tuning of peripheral T cell responses. The effect of avidity for self-ligand(s) on this sensory adaptation was studied by expressing ZAP-YEEI in P14 or HY TCR transgenic backgrounds. Unexpectedly, double-transgenic animals expressed ZAP-YEEI prematurely in double-positive thymocytes, but no overt alteration of selection processes was observed. Instead, modifications of TCR and CD5 expression due to ZAP-YEEI suggested that signal tuning occurred during thymic maturation. Importantly, although P14 x ZAP-YEEI peripheral CD8 T cells were reduced in number and showed lower Ag-induced cytokine production and limited lymphopenia-driven proliferation, the peripheral survival/expansion and Ag responsiveness of HY x ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage.

Type

Journal article

Journal

J Immunol

Publication Date

01/12/2005

Volume

175

Pages

7388 - 7397

Keywords

Adoptive Transfer, Animals, Autoantigens, CD5 Antigens, CD8-Positive T-Lymphocytes, Clonal Deletion, Cytokines, Extracellular Signal-Regulated MAP Kinases, Flow Cytometry, H-Y Antigen, Immune Tolerance, Immunoblotting, Immunoprecipitation, Lymphocyte Activation, Major Histocompatibility Complex, Mice, Mice, Inbred C57BL, Mice, Transgenic, Phosphorylation, Receptors, Antigen, T-Cell, Thymus Gland, ZAP-70 Protein-Tyrosine Kinase