Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mutations in genes encoding the ATP-regulated potassium (K(ATP)) channels of the pancreatic beta-cell (SUR1 and Kir6.2) are the major known cause of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We collected all cases of PHHI diagnosed in Finland between 1983 and 1997 (n = 24). The overall incidence was 1:40,400, but in one area of Central Finland it was as high as 1:3,200. Haplotype analysis using polymorphic markers spanning the SUR1/Kir6.2 gene cluster confirmed linkage to the 11p region. Sequence analysis revealed a novel point mutation in exon 4 of SUR1, predicting a valine to aspartic acid change at amino acid 187 (V187D). Of the total cases, 15 affected individuals harbored this mutation in heterozygous or homozygous form, and all of these had severe hyperinsulinemia that responded poorly to medical treatment and required subtotal pancreatectomy. No K(ATP) channel activity was observed in beta-cells isolated from a homozygous patient or after coexpression of recombinant Kir6.2 and SUR1 carrying the V187D mutation. Thus, the mutation produces a nonfunctional channel and, thereby, continuous insulin secretion. This unique SUR1 mutation explains the majority of PHHI cases in Finland and is strongly associated with a severe form of the disease. These findings provide diagnostic and prognostic utility for suspected PHHI patients.

Type

Journal article

Journal

Diabetes

Publication Date

02/1999

Volume

48

Pages

408 - 415

Keywords

ATP-Binding Cassette Transporters, Adenosine Triphosphate, Animals, Electrophysiology, Female, Finland, Haplotypes, Humans, Hyperinsulinism, Hypoglycemia, Incidence, Infant, Infant, Newborn, Islets of Langerhans, Male, Mutation, Point Mutation, Potassium Channels, Potassium Channels, Inwardly Rectifying, Receptors, Drug, Recombinant Proteins, Sulfonylurea Receptors, Xenopus laevis