Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The mouse is the predominant animal model to study the effect of gene manipulations. Imaging techniques to define functional effects on the heart caused by genomic alterations are becoming increasingly routine in mice, yet methods for in vivo investigation of metabolic phenotypes in the mouse heart are lacking. In this work, cardiac 1H-MRS was developed and applied in mouse hearts in vivo using a single-voxel technique (PRESS). In normal C57Bl/6J mice, stability and reproducibility achieved by dedicated cardiac and respiratory gating was demonstrated by measuring amplitude and zero-order phase changes of the unsuppressed water signal. Various cardiac metabolites, such as creatine, taurine, carnitine, or intramyocardial lipids were successfully detected and quantified relative to the total water content in voxels as small as 2 microl, positioned in the interventricular septum. The method was applied to a murine model of guanidinoacetate N-methyltransferase (GAMT) deficiency, which is characterized by substantially decreased myocardial creatine levels. Creatine deficiency was confirmed noninvasively in myocardium of anesthetized GAMT-/- mice. This is the first study to report the application of cardiac 1H-MRS in mice in vivo.

Original publication

DOI

10.1002/mrm.20257

Type

Journal article

Journal

Magn Reson Med

Publication Date

11/2004

Volume

52

Pages

1029 - 1035

Keywords

Animals, Carnitine, Creatine, Feasibility Studies, Glycerides, Magnetic Resonance Spectroscopy, Mice, Mice, Inbred C57BL, Myocardium, Taurine