Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Maculatin 1.1 (M1.1) is a membrane-active antimicrobial peptide (AMP) from an Australian tree frog that forms a kinked amphipathic alpha-helix in the presence of a lipid bilayer or bilayer-mimetic environment. To help elucidate its mechanism of membrane-lytic activity, we performed a total of approximately 8 micros of coarse-grained molecular dynamics (CG-MD) simulations of M1.1 in the presence of zwitterionic phospholipid membranes. Several systems were simulated in which the peptide/lipid ratio was varied. At a low peptide/lipid ratio, M1.1 adopted a kinked, membrane-interfacial location, consistent with experiment. At higher peptide/lipid ratios, we observed spontaneous, cooperative membrane insertion of M1.1 peptide aggregates. The minimum size for formation of a transmembrane (TM) aggregate was just four peptides. The absence of a simple and well-defined central channel, along with the exclusion of lipid headgroups from the aggregates, suggests that a pore-like model is an unlikely explanation for the mechanism of membrane lysis by M1.1. We also performed an extended 1.25 micros simulation of the permeabilization of a complete liposome by multiple peptides. Consistent with the simpler bilayer simulations, formation of monomeric interfacial peptides and TM peptide clusters was observed. In contrast, major structural changes were observed in the vesicle membrane, implicating induced membrane curvature in the mechanism of active antimicrobial peptide lysis. This contrasted with the behavior of the nonpore-forming model peptide WALP23, which inserted into the vesicle to form extended clusters of TM alpha-helices with relatively little perturbation of bilayer properties.

Original publication

DOI

10.1529/biophysj.108.128686

Type

Journal article

Journal

Biophys J

Publication Date

10/2008

Volume

95

Pages

3802 - 3815

Keywords

Amphibian Proteins, Animals, Antimicrobial Cationic Peptides, Anura, Computer Simulation, Lipid Bilayers, Liposomes, Models, Molecular